925 research outputs found

    The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda.

    No full text
    BACKGROUND: Sleeping sickness, caused by two trypanosome subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, is a parasitic disease transmitted by the tsetse fly in sub-Saharan Africa. We report on a recent outbreak of T b rhodesiense sleeping sickness outside the established south-east Ugandan focus, in Soroti District where the disease had previously been absent. Soroti District has been the subject of large-scale livestock restocking activities and, because domestic cattle are important reservoirs of T b rhodesiense, we investigated the role of cattle in the origins of the outbreak. METHODS: We identified the origins of cattle entering the outbreak area in the 4 years preceding the outbreak. A matched case-control study was conducted to assess whether the distance of villages from the main market involved with restocking was a risk factor for sleeping sickness. We investigated the spatial clustering of sleeping sickness cases at the start of the outbreak. FINDINGS: Over 50% (1510 of 2796) of cattle traded at the market were reported to have originated from endemic sleeping sickness areas. The case-control study revealed that distance to the cattle market was a highly significant risk factor for sleeping sickness (p<0.001) and that there was a significant clustering of cases (27 of 28) close to the market at the start of the outbreak (p<0.001). As the outbreak progressed, the average distance of cases moved away from the cattle market (0.014 km per day, 95% CI 0.008-0.020 km per day, p<0.001). INTERPRETATIONS: The results are consistent with the disease being introduced by cattle infected with T b rhodesiense imported to the market from the endemic sleeping sickness focus. The subsequent spread of the disease away from the market suggests that sleeping sickness is becoming established in this new focus. Public health measures directed at controlling the infection in the animal reservoir should be considered to prevent the spread of sleeping sickness

    Flux Discharge Cascades in Various Dimensions

    Full text link
    We study the dynamics of electric flux discharge by charged particle pair or spherical string or membrane production in various dimensions. When electric flux wraps at least one compact cycle, we find that a single "pair" production event can initiate a cascading decay in real time that "shorts out" the flux and discharges many units of it. This process arises from local dynamics in the compact space, and so is invisible in the dimensionally-reduced truncation. It occurs in theories as simple as the Schwinger model on a circle, and has implications for any theory with compact dimensions and electric flux, including string theories and the string landscape.Comment: 19+8 pages, 3 figures, 3 appendice

    The feasibility of canine rabies elimination in Africa: dispelling doubts with data

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Canine rabies causes many thousands of human deaths every year in Africa, and continues to increase throughout much of the continent.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; This paper identifies four common reasons given for the lack of effective canine rabies control in Africa: (a) a low priority given for disease control as a result of lack of awareness of the rabies burden; (b) epidemiological constraints such as uncertainties about the required levels of vaccination coverage and the possibility of sustained cycles of infection in wildlife; (c) operational constraints including accessibility of dogs for vaccination and insufficient knowledge of dog population sizes for planning of vaccination campaigns; and (d) limited resources for implementation of rabies surveillance and control. We address each of these issues in turn, presenting data from field studies and modelling approaches used in Tanzania, including burden of disease evaluations, detailed epidemiological studies, operational data from vaccination campaigns in different demographic and ecological settings, and economic analyses of the cost-effectiveness of dog vaccination for human rabies prevention.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; We conclude that there are no insurmountable problems to canine rabies control in most of Africa; that elimination of canine rabies is epidemiologically and practically feasible through mass vaccination of domestic dogs; and that domestic dog vaccination provides a cost-effective approach to the prevention and elimination of human rabies deaths.&lt;/p&gt

    Non-Abelian discrete gauge symmetries in 4d string models

    Full text link
    We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.Comment: 58 pages; minor typos corrected and references adde

    Oral anticoagulant use in cardiovascular disorders: a perspective on present and potential indications for rivaroxaban.

    Get PDF
    BACKGROUND: Four nonvitamin K antagonist oral anticoagulants (NOACs) have been approved for use in various cardiovascular indications. The direct thrombin inhibitor dabigatran and the direct factor Xa inhibitors apixaban, edoxaban, and rivaroxaban are now increasingly used in clinical practice. For some of these agents, available data from real-world studies support the efficacy and safety data in phase III clinical trials. OBJECTIVES: This review aims to summarize the current status of trials and observational studies of oral anticoagulant use over the spectrum of cardiovascular disorders (excluding venous thrombosis), provide a reference source beyond stroke prevention for atrial fibrillation (AF) and examine the potential for novel applications in the cardiovascular field. METHODS: We searched the recent literature for data on completed and upcoming trials of oral anticoagulants with a particular focus on rivaroxaban. RESULTS: Recent data in specific patient subgroups, such as patients with AF undergoing catheter ablation or cardioversion, have led to an extended approval for rivaroxaban, whereas the other NOACs have ongoing or recently completed trials in this setting. However, there are unmet medical needs for several arterial thromboembolic-related conditions, including patients with: AF and acute coronary syndrome, AF and coronary artery disease undergoing elective percutaneous coronary intervention, coronary artery disease and peripheral artery disease, implanted cardiac devices, and embolic stroke of unknown source. CONCLUSION: NOACs may provide alternative treatment options in areas of unmet need, and numerous studies are underway to assess their benefit-risk profiles in these settings

    IgG Fc Receptors Provide an Alternative Infection Route for Murine Gamma-Herpesvirus-68

    Get PDF
    BACKGROUND: Herpesviruses can be neutralized in vitro but remain infectious in immune hosts. One difference between these settings is the availability of immunoglobulin Fc receptors. The question therefore arises whether a herpesvirus exposed to apparently neutralizing antibody can still infect Fc receptor(+) cells. PRINCIPAL FINDINGS: Immune sera blocked murine gamma-herpesvirus-68 (MHV-68) infection of fibroblasts, but failed to block and even enhanced its infection of macrophages and dendritic cells. Viral glycoprotein-specific monoclonal antibodies also enhanced infection. MHV-68 appeared to be predominantly latent in macrophages regardless of whether Fc receptors were engaged, but the infection was not abortive and new virus production soon overwhelmed infected cultures. Lytically infected macrophages down-regulated MHC class I-restricted antigen presentation, endocytosis and their response to LPS. CONCLUSIONS: IgG Fc receptors limit the neutralization of gamma-herpesviruses such as MHV-68

    Patterns in Age-Seroprevalence Consistent with Acquired Immunity against Trypanosoma brucei in Serengeti Lions

    Get PDF
    Trypanosomes cause disease in humans and livestock throughout sub-Saharan Africa. Although various species show evidence of clinical tolerance to trypanosomes, until now there has been no evidence of acquired immunity to natural infections. We discovered a distinct peak and decrease in age prevalence of T. brucei s.l. infection in wild African lions that is consistent with being driven by an exposure-dependent increase in cross-immunity following infections with the more genetically diverse species, T. congolense sensu latu. The causative agent of human sleeping sickness, T. brucei rhodesiense, disappears by 6 years of age apparently in response to cross-immunity from other trypanosomes, including the non-pathogenic subspecies, T. brucei brucei. These findings may suggest novel pathways for vaccinations against trypanosomiasis despite the notoriously complex antigenic surface proteins in these parasites

    Murine Gammaherpesvirus-68 Inhibits Antigen Presentation by Dendritic Cells

    Get PDF
    Dendritic cells (DCs) play a central role in initiating adaptive immunity. Murine gammaherpesvirus-68 (MHV-68), like many persistent viruses, infects DCs during normal host colonization. It therefore provides a means to understanding what host and viral genes contribute to this aspect of pathogenesis. The infected DC phenotype is likely to depend on whether viral gene expression is lytic or latent and whether antigen presentation is maintained. For MHV-68, neither parameter has been well defined. Here we show that MHV-68 infects immature but not mature bone marrow-derived DCs. Infection was predominantly latent and these DCs showed no obvious defect in antigen presentation. Lytically infected DCs were very different. These down-regulated CD86 and MHC class I expression and presented a viral epitope poorly to CD8+ T cells. Antigen presentation improved markedly when the MHV-68 K3 gene was disrupted, indicating that K3 fulfils an important function in infected DCs. MHV-68 infects only a small fraction of the DCs present in lymphoid tissue, so K3 expression is unlikely to compromise significantly global CD8+ T cell priming. Instead it probably helps to maintain lytic gene expression in DCs once CD8+ T cell priming has occurred

    Malaria transmission and morbidity patterns in holoendemic areas of Imo River Basin of Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study determines the relationship between malaria transmission intensity and morbidity in holoendemic areas of Imo River Basin, Nigeria.</p> <p>Results</p> <p>Standard entomological and parasitological techniques were used to determine transmission intensity and parasite rates respectively while sociocultural methods and review of hospital records were used to determine morbidity patterns. The average transmission rate was 16.1 infective bites per person per night (ib/p/n). The average malaria specific morbidity rate for the study area was 30.2%. These parameters showed no significant differences among the communities studied (<it>P </it>> 0.05). Transmission intensity and morbidity rate had a linear relationship such that high transmission intensity corresponded with high morbidity rate and vice versa.</p> <p>Conclusions</p> <p>This therefore puts to rest discrepancies about the relationship between malaria transmission and morbidity in the study area and calls for serious scaling up of the insecticide treated nets strategy especially in high transmission areas and seasons. Concerted efforts should also be made towards production of transmission blocking vaccines.</p
    corecore